New Dithiolopyrrolone Antibiotics from Saccharothrix sp. SA 233

II. Physicochemical Properties and Structure Elucidation

Lynda Lamari^{a,b}, Abdelghani Zitouni^{da}, Tahar Dob^a, Nasserdine Sabaou^{a,b,*}, Ahmed Lebrihi^d, Pierre Germain^c, Elisabeth Seguin^e and François Tillequin^f

^a Laboratoire de Recherche sur les produits Bioactifs et la Valorisation de la Biomasse, Ecole Normale Supérieure de Kouba,

B.P. 92, 16 050 Vieux-Kouba, Alger, Algérie

^b Centre de Recherche Scientifique et Technique sur les Régions Arides, Front de l'Oued,

B.P. 1682, 07 000 Biskra, Algérie

^c Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires, INPL,

2 avenue de la Forêt de Haye, F-54 000 Nancy, France

^d Ecole Nationale Supérieure d'Agronomie de Toulouse, INPT, Laboratoire de Génie Chimique, UMR 5503 (CNRS/INPT/UPS),

1, avenue de l'Agrobiopôle, B.P. 107, F-31 326 Castanet-Tolosan Cedex, France

^eLaboratoire de Pharmacognosie de l'Université de Rouen-Haute Normandie, Faculté de Pharmacie,

22, Boulevard Gambetta, F-76183 Rouen Cedex 1, France

^fLaboratoire de Pharmacognosie de l'Université René Descartes, UMR/CNRS n° 8638,

Faculté des Sciences Pharmaceutiques et Biologiques,

4, Avenue de l'Observatoire, F-75006 Paris, France

(Received for publication April 30, 2002)

Three new natural dithiopyrrolone antibiotics, 3-methyl-2-butenoylpyrrothine (1), tigloylpyrrothine (2), and *n*-butyropyrrothine (3) were isolated along with the known *iso*-butyropyrrothine (4) and thiolutin (5) from the fermentation broth of *Saccharothrix* sp. SA 233. The structures of the novel compounds were established on the basis on their spectral data.

During the course of a screening for new antibiotic agents from rare microorganisms present in the soil of the palm groves of Southern Algeria^{1,2)}, several antibiotics $(1\sim5)$ were obtained from the fermentation broth of *Saccharothrix* sp. SA 233. The taxonomy of the producing strain, fermentation, isolation, and biological activities of compounds $1\sim5$ are described in the preceding paper³⁾. We report here the physico-chemical properties and the structural elucidation of novel natural compounds $1\sim3$, together with the identification of 4 and 5.

Results and Discussion

Physico-chemical properties of novel compounds $1\sim3$ are summarized in Table 1. The antibiotics $1\sim5$ were obtained as bright yellow to orange yellow amorphous powders. Spectral features common to the five products included: (i) typical IR absorption bands at $3300\sim3100$,

Fig. 1. Dithiolopyrrolone antibiotics from *Saccharothrix* sp. SA 233.

^{*} Corresponding author: sabaou@yahoo.fr

	1	2	3
Appearance	Yellow orange powder	Yellow orange powder	Yellow powder
Molecular formula	C ₁₁ H ₁₂ N ₂ O ₂ S ₂	C ₁₁ H ₁₂ N ₂ O ₂ S ₂	C ₁₀ H ₁₂ N ₂ O ₂ S ₂
Molecular weight	268	268	256
EI-MS (m/z)	268 (M ⁺), 186, 83, 55	268 (M ⁺), 186, 83, 55	256 (M ⁺), 186, 43
HR-MS Found:	268.03430	268.03400	256.03417
Calcd:	268.03402	268.03402	256.03402
UV λ_{max} nm (log ϵ) in MeOH	302 (3.87) , 402 (3.97)	302 (3.85), 402 (3.96)	308 (3.70), 389 (3.92)
IR v_{max} in KBr (cm ⁻¹)	3270, 1680, 1655, 1635, 1600, 1520, 1225	3220, 1670, 1650, 1600, 1500, 1210	3280, 1680, 1650, 1600, 1540, 1225
Solubility			
Soluble	MeOH, CH ₂ Cl ₂ , CHCl ₃ , DMSO	MeOH, CH ₂ Cl ₂ , CHCl ₃ , DMSO	MeOH, CH ₂ Cl ₂ , CHCl ₃ , DMSO
Slightly soluble	Me₂CO, H₂O, EtOAc, CH₃CN	Me₂CO, H₂O, EtOAc, CH₃CN	Me₂CO, H₂O, EtOAc, CH₃CN
Insoluble	<i>n</i> -hexane	<i>n</i> -hexane	<i>n</i> -hexane
Color reaction			
Positive	Bromocresol green/ bromophenol blue/ KMNO4 reagent	Bromocresol green/ bromophenol blue/ KMNO4 reagent	Bromocresol green/ bromophenol blue/ KMNO₄ reagent
Negative	Ninhydrine, FeCl ₃ , Anisaldehyde-H ₂ SO ₄ , Millon, Tollens-Zaffaroni reagents	Ninhydrine, FeCl ₃ , Anisaldehyde-H ₂ SO ₄ , Millon, Tollens-Zaffaroni reagents	Ninhydrine, FeCl ₃ , Anisaldehyde-H ₂ SO ₄ , Millon, Tollens-Zaffaroni reagents
TLC (Rf value) ^a			
(I)	0.59	0.59	0.59
(II)	0.63	0.63	0.63
(III)	0.65	0.65	0.65
HPLC (Rt) ^b	11.0 min	10.0 min	7.1 min

Table 1. Physico-chemical properties of compounds $1 \sim 3$.

^aSilica gel TLC (Merck No 5715). (I): EtOAc- MeOH (100:15). (II): *n*-BuOH-CH₃COOH-H₂O (3:1:1).

(III): EtOH-H₂O (1:2).

^bHPLC conditions: Uptishere C₁₈ (300x7.8 mm, i.d.), Mobile phase: MeOH-H₂O (50:50), Flow rate: 2 ml/min,

Detection: UV-220 nm.

~1670, and ~1650 cm⁻¹, accounting for two different amide groups, (ii) strong UV absorptions at 300~310 and 385~405 nm, (iii) the presence of a prominent fragment ion at m/z 186 corresponding to the empirical formula $C_6H_6N_2OS_2$ in EI-MS, (iv) the appearance on the ¹H-NMR spectra (Table 2) of two singlets at 7.30~6.60 and 3.40~3.20 ppm typical for one isolated olefinic proton and one N-CH₃ group included in a amide function,

Position	l (CDCl ₃)	2 (CDCl ₃)	3 (CDCl ₃)	4 (CDCl ₃)	5 (DMSO-d ₆)
H-3	6.62 (1H, s)	6.63 (1H, s)	6.65 (1H, s)	6.64 (1H, s)	7.30 (1H, s)
N(4)-CH3	3.37 (3H s)	3.37 (3H s)	3.37 (3H s)	3.37 (3H s)	3.20 (3H s)
C(6)-NH	7.43 (1H, br. s)	7.69 (1H, br. s)	7.45 (1H, br. s)	7.46 (1H, br. s)	9.95 (1H, br. s)
Amido	5.71 (1H, m)	6.65 (1H, m)	2.33 (2H, t, 7)	2.53 (1H, spt, 7)	2.50 (3H, s)
moiety	2.25 (3H, d, 1)	1.92 (3H, br. s)	1.74 (2H, sxt, 7)	1.23 (6H, d, 7)	
	1.90 (3H, d , 1)	1.83(3H, d, 8)	1.00 (3H, t, 7)		

Table 2. ¹H (300 MHz) NMR data of compounds $1 \sim 4$ in comparison with thiolutin (5) (δ [ppm], multiplicity, J [Hz]).

Table 3. ¹³C (75 MHz) NMR data of compounds $1 \sim 3$ and 5 (δ [ppm], multiplicity).

Position	1 (CDCl ₃)	2 (CDCl ₃)	3 (CDCl ₃)	5 (DMSO-d ₆)
3	108.5 (d)	108.9 (d)	108.8 (d)	112.1 (d)
3a	131.9 (s)	132.5 (s)	132.2 (s)	133.6 (s)
N(4)-CH3	29.7 (q)	29.7 (q)	29.7 (q)	27.8 (q)
5	167.0 (s)	167.1 (s)	167.8 (s)	167.3 (s)
6	114.7 (s)	114.9 (s)	115.2 (s)	115.9 (s)
6a	136.9 (s)	136.2 (s)	136.4 (s)	137.1 (s)
Amido moiety	164.3 (s)	165.7 (s)	170.8 (s)	170.0 (s)
	155.7 (s)	133.7 (d)	38.2 (t)	23.5 (q)
	116.8 (d)	129.0 (s)	19.4 (t)	
	27.5 (q)	14.1 (q)	13.6 (q)	
	20.3 (q)	11.8 (q)		

•

respectively. These data unambiguously characterized compounds $1\sim5$ as *N*-acyl derivatives of 6-amino-4-methyl-1,2-dithiolo[4,3-*b*]pyrrol-5[4*H*]-one^{4~8)}, differing only from each other by the amido moiety.

The molecular formula of 3-methyl-2-butenoylpyrrothine (1) was established as $C_{11}H_{12}N_2O_2S_2$ by HR-MS [found *m*/*z* 268.03430 (M⁺), calcd. 268.03402]. Observation of a 1H olefinic multiplet at δ 5.71 ppm coupled with two 3H methyl doublets (*J*=1 Hz) at δ 2.25 and 1.90 ppm in the ¹H-NMR spectrum was consistent with the presence of a 3-methyl-2-butenoyl side chain. The ¹³C-NMR spectrum (Table 3) confirmed the presence of 11 carbons in 1. It also provided confirmation of the structure of the amido moiety, with five typical signals observed at δ 20.3 (q), 27.5 (q), 116.8 (d), 155.7 (s), and 164.3 (s) ppm, the latter characterizing a conjugated amide carbonyl group. The six other ¹³C-NMR resonances were assigned to the 4-methyl-1,2-dithiolo[4,3-*b*]pyrrol-5[4*H*]-one basic core.

The empirical formula of tigloylpyrrothine (2) was also established as $C_{11}H_{12}N_2O_2S_2$ by HR-MS [found m/z268.03400 (M⁺), calcd. 268.03402]. The UV and MS spectra of 2 were merely identical to those of 3-methyl-2butenoylpyrrothine (1). Nevertheless significant differences were noticed in the ¹H-NMR spectrum, where the characteristic signals of a 2-methyl-2-butenoyl side chain appeared as a 3H doublet (J=8 Hz) at δ 1.83 ppm, a 3H broad singlet at δ 1.92 ppm, and a 1H multiplet at δ 6.65 ppm. The strongly deshielded position of this latter signal gave evidence for the (E) configuration of the amido moiety. In agreement with this statement, signals associated with a tigloyl unit were observed at δ 11.8 (q), 14.1 (q), 129.0 (s), 133.7 (d), and 165.7 (s) ppm in the ¹³C-NMR spectrum, together with the six signals of the methyldithiolopyrrolone skeleton.

n-Butyropyrrothine (3) had a molecular formula of $C_{10}H_{12}N_2O_2S_2$, determined by HR-MS [found *m/z* 256.03417 (M⁺), calcd. 256.03402]. The ¹H-NMR spectrum displayed a 2H triplet (*J*=7 Hz) at δ 2.33 ppm, a 2H sextet (*J*=7 Hz) at δ 1.74 ppm, and a 3H triplet (*J*=7 Hz) at δ 1.00 ppm accounting for a *n*-butyryl amide side chain, whose resonances appeared at δ 13.6 (q), 19.4 (t), 38.2 (t), and 170.8 (s) ppm in ¹³C-NMR. It should be mentioned that *n*-butyropyrrothine (3) was previously synthesized by condensation of butyric anhydride with 6-amino-4-methyl-1,2-dithiolo[4,3-*b*]pyrrol-5[4*H*]-one obtained by hydrolysis of thiolutin (5)⁷). This compound is obtained here for the first time from a natural source.

Finally, the two further antibiotics isolated from *Saccharothrix* sp. SA 233 were identified as *iso*-butyro-pyrrothine (4), previously obtained from *Streptomyces*

pimprina broth⁹⁾, and thiolutin (5) produced by various *Streptomyces* strains⁶⁻¹¹). The ¹H-NMR data of **4** and the ¹³C-NMR data of **5**, which were not previously described, are summarized in Tables 2 and 3, respectively.

Experimental

General Experimental Procedures

IR spectra (v_{max} in cm⁻¹) were obtained on a Nicolet 510 FT-IR instrument. UV spectra (λ_{max} in nm) were determined in spectroscopic grade MeOH on a Beckman DU 640B spectrophotometer. ¹H-NMR and ¹³C-NMR spectra were recorded at 300 MHz and 75 MHz respectively, using a Bruker AC-300 spectrometer. When necessary, the signals were unambiguously assigned by 2D NMR techniques: ¹H-¹H COSY, ¹³C-¹H HETCOR, and ¹³C-¹H COLOC. These experiments were performed using standard Bruker microprograms. Electron impact mass spectra were recorded at 70 eV with a Nermag R-10-10C spectrometer. High resolution mass spectra were obtained on a Micromass ZAB2-SEQ spectrometer.

References

- SABAOU, N.; H. HACENE, A. BENNADJI, H. BENNADJI & N. BOUNAGA: Distribution qualitative et quantitative des actinomycètes dans les horizons de sol de surface et profonds d'une palmeraie algérienne. Can. J. Microbiol. 38: 357~360, 1992
- HACENE, H.; N. SABAOU, N. BOUNAGA & G. LEFEBVRE: Screening for non-polyenic antifungal antibiotics produced by rare *Actinomycetales*. Microbios 79: 81~85, 1994
- LAMARI, L.; A. ZITOUNI, T. DOB, N. SABAOU, P. GERMAIN, G. LEFEBVRE, E. SEGUIN & F. TILLEQUIN: New dithiolopyrrolone antibiotics from *Saccharothrix* sp. SA 233. I. Taxonomy, production, isolation, and biological properties. J. Antibiotics 55: 696~701, 2002
- 4) MCIVERNEY, B. V.; R. P. GREGSON, M. J. LACEY, R. J. AKHRUST, G. R. LYONS, S. H. RHODES, D. R. J. SMITH, L. M. ENGELHARDT & A. H. WHITE: Biologically active metabolites from *Xenorhabdus* spp., Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J. Nat. Prod. 54: 774~784, 1991
- 5) ETTLINGER, L.; E. GÄUMANN, R. HÜTTER, W. KELLER-SCHIERLEIN, F. KRADOLFER, L. NEIPP, V. PRELOG & H. ZÄHNER: Stoffwechselprodukte von Actinomyceten– Holomycin. Helv. Chim. Acta 42: 563~569, 1959
- 6) CELMER, W. D.; F. W. TANNER Jr, M. HARFENIST, T. M. LEES & I. A. SOLOMONS: Characterization of the antibiotic thiolutin and its relationship with aureothricin. J. Am. Chem. Soc. 74: 6304~6305, 1952
- CELMER, W. D. & I. A. SOLOMONS: Studies on a common hydrolysis product of thiolutin and aureothricin. Antibiotics Annual 1953–1954: 622~625, 1953–1954

- CELMER, W. D. & I. A. SOLOMONS: The structures of thiolutin and aureothricin, antibiotics containing a unique pyrrolinonedithiole nucleus. J. Am. Chem. Soc. 77: 2861~2865, 1955
- 9) BHATE, D. S.; R. K. HULYALKAR & S. K. MENON: Isolation of iso-butyropyrrothine along with thiolutin and aureothricin from a *Streptomyces* sp. Experimentia 16: 504~505, 1960

•

- 10) VON DAEHNE, W.; W. O. GODTFREDSEN, L. TYBRING & K. SCHAUMBURG: New antibiotics containing the 1,2dithiolo[4,3-b]pyrrole ring system. J. Antibiotics 22: 233~236, 1969
- 11) DELL, I.; R. A. GODFREY & D. J. WADSWORTH: The synthesis of naturally occurring 1,2-dithiolo[4,3-b]-pyrrolones and related compounds. A.C.S. Symposium Series 504: 384~394, 1992

.